A screen for X-linked mutations affecting Drosophila photoreceptor differentiation identifies Casein kinase 1α as an essential negative regulator of wingless signaling.
نویسندگان
چکیده
The Wnt and Hedgehog signaling pathways are essential for normal development and are misregulated in cancer. The casein kinase family of serine/threonine kinases regulates both pathways at multiple levels. However, it has been difficult to determine whether individual members of this family have distinct functions in vivo, due to their overlapping substrate specificities. In Drosophila melanogaster, photoreceptor differentiation is induced by Hedgehog and inhibited by Wingless, providing a sensitive system in which to identify regulators of each pathway. We used a mosaic genetic screen in the Drosophila eye to identify mutations in genes on the X chromosome required for signal transduction. We recovered mutations affecting the transcriptional regulator CREB binding protein, the small GTPase dynamin, the cytoskeletal regulator Actin-related protein 2, and the protein kinase Casein kinase 1α. Consistent with its reported function in the β-Catenin degradation complex, Casein Kinase 1α mutant cells accumulate β-Catenin and ectopically induce Wingless target genes. In contrast to previous studies based on RNA interference, we could not detect any effect of the same Casein Kinase 1α mutation on Hedgehog signaling. We thus propose that Casein kinase 1α is essential to allow β-Catenin degradation and prevent inappropriate Wingless signaling, but its effects on the Hedgehog pathway are redundant with other Casein kinase 1 family members.
منابع مشابه
A Screen for X-Linked Mutations Affecting Drosophila Photoreceptor Differentiation Identifies Casein Kinase 1a as an Essential Negative Regulator of Wingless Signaling
The Wnt and Hedgehog signaling pathways are essential for normal development and are misregulated in cancer. The casein kinase family of serine/threonine kinases regulates both pathways at multiple levels. However, it has been difficult to determine whether individual members of this family have distinct functions in vivo, due to their overlapping substrate specificities. In Drosophila melanoga...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملPlanar Polarity Is Positively Regulated by Casein Kinase Iɛ in Drosophila
Members of the casein kinase I (CKI) family have been implicated in regulating canonical Wnt/Wingless (Wg) signaling by phosphorylating multiple pathway components [1, 2]. Overexpression of CKI in vertebrate embryos activates Wg signaling [3, 4], and one target is thought to be the cytoplasmic effector Dishevelled (Dsh), which is an in vitro target of CKI phosphorylation. Phosphorylation of Dsh...
متن کاملA genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila.
kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the ...
متن کاملA misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster.
Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 190 2 شماره
صفحات -
تاریخ انتشار 2012